3.392 \(\int \frac{1}{\sqrt{a x^2+b x^n}} \, dx\)

Optimal. Leaf size=37 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a x^2+b x^n}}\right )}{\sqrt{a} (2-n)} \]

[Out]

(2*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^n]])/(Sqrt[a]*(2 - n))

________________________________________________________________________________________

Rubi [A]  time = 0.015101, antiderivative size = 37, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {2008, 206} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a x^2+b x^n}}\right )}{\sqrt{a} (2-n)} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a*x^2 + b*x^n],x]

[Out]

(2*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^n]])/(Sqrt[a]*(2 - n))

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a x^2+b x^n}} \, dx &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{x}{\sqrt{a x^2+b x^n}}\right )}{2-n}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} x}{\sqrt{a x^2+b x^n}}\right )}{\sqrt{a} (2-n)}\\ \end{align*}

Mathematica [B]  time = 0.0681361, size = 78, normalized size = 2.11 \[ -\frac{2 \sqrt{b} x^{n/2} \sqrt{\frac{a x^{2-n}}{b}+1} \sinh ^{-1}\left (\frac{\sqrt{a} x^{1-\frac{n}{2}}}{\sqrt{b}}\right )}{\sqrt{a} (n-2) \sqrt{a x^2+b x^n}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a*x^2 + b*x^n],x]

[Out]

(-2*Sqrt[b]*x^(n/2)*Sqrt[1 + (a*x^(2 - n))/b]*ArcSinh[(Sqrt[a]*x^(1 - n/2))/Sqrt[b]])/(Sqrt[a]*(-2 + n)*Sqrt[a
*x^2 + b*x^n])

________________________________________________________________________________________

Maple [F]  time = 0.326, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{\sqrt{a{x}^{2}+b{x}^{n}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x^2+b*x^n)^(1/2),x)

[Out]

int(1/(a*x^2+b*x^n)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a x^{2} + b x^{n}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^2+b*x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(a*x^2 + b*x^n), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^2+b*x^n)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a x^{2} + b x^{n}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x**2+b*x**n)**(1/2),x)

[Out]

Integral(1/sqrt(a*x**2 + b*x**n), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a x^{2} + b x^{n}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x^2+b*x^n)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(a*x^2 + b*x^n), x)